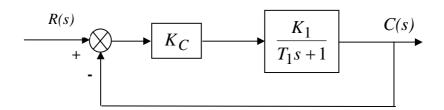
SISTEMAS DE PRIMER ORDEN - TIPO 0



Función de Transferencia a Lazo Cerrado (FTLC): $\frac{C(s)}{R(s)}$

$$\frac{C(s)}{R(s)} = \frac{\frac{K_C K_1}{T_1 s + 1}}{1 + \frac{K_C K_1}{T_1 s + 1}} = \frac{K_C K_1}{T_1 s + (1 + K_C K_1)}$$

Tomando
$$K_P = K_I K_C$$
 $K = \frac{K_P}{I + K_P}$ y $T = \frac{T_I}{I + K_P}$

Podemos representar nuestro sistema como:

$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1}$$

donde: K = Ganancia del sistema.

T = Constante de tiempo del sistema.

RESPUESTA AL ESCALON: $R(s) = \frac{A}{s}$

Sustituyendo: $C(s) = \frac{KA}{s(Ts+1)}$

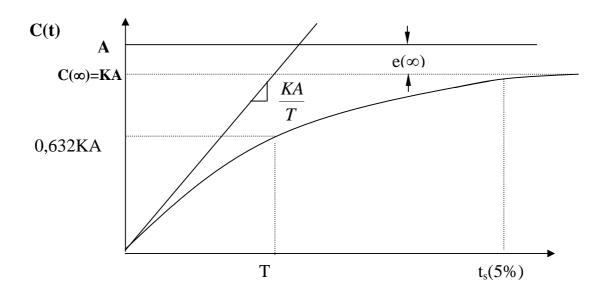
Aplicando fracciones parciales:

$$C(s) = \frac{KA}{s(Ts+1)} = \frac{\frac{KA}{T}}{s(s+1)} = \left(\frac{K}{s} - \frac{K}{s+1/T}\right)A$$

Por lo tanto:

Respuesta en el tiempo: $c(t) = K A (1 - e^{-t/T})$

Para: t = T; $c(t) = K A (1 - e^{-1}) = 0.632 KA$



Respuesta al escalón de un sistema de 1er orden tipo 0

En conclusión:

Respuesta al escalón de un sistema de primer orden Tipo 0:

a) Respuesta estacionaria:

Error en estado estacionario: e(t) = r(t) - c(t) \Rightarrow

$$e_{SS} = e(\infty) = A - c(\infty) = \left(A - \frac{K_P A}{1 + K_P}\right) = \frac{A}{1 + K_P}$$

b) Respuesta Transitoria:

Queda definida por la constante de tiempo T.

Está caracterizada por el tiempo de establecimiento t_s , en el cual la respuesta alcanza los siguientes valores:

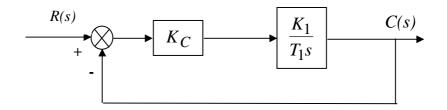
$$t_s = 3 T \Rightarrow c(3T) = 0.95 c(\infty) \Rightarrow$$

la respuesta permanece dentro de un 5% del valor final

$$t_s = 4 T \Rightarrow c(4T) = 0.98 c(\infty) \Rightarrow$$

la respuesta permanece dentro de un 2% del valor final

SISTEMA DE PRIMER ORDEN - TIPO 1



Función de Transferencia a Lazo Cerrado (FTLC): $\frac{C(s)}{R(s)}$

$$\frac{C(s)}{R(s)} = \frac{\frac{K_P}{T_I s}}{I + \frac{K_P}{T_I s}} = \frac{K_P}{T_I s + K_P}$$

Podemos reescribir el sistema como:

$$\frac{C(s)}{R(s)} = \frac{1}{Ts+1}$$

donde: K = Ganancia del sistema = 1

 $T = \text{Constante de tiempo del sistema} = \frac{T_I}{K_P}$

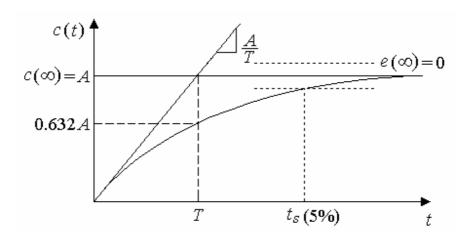
RESPUESTA AL ESCALON: $R(s) = \frac{A}{s}$

Sustituyendo y aplicando fracciones parciales:

$$C(s) = \frac{A}{s(s+1/T)} = \frac{A}{s} - \frac{A}{s+1/T}$$

Respuesta en el tiempo: $c(t) = A(1 - e^{-t/T})$

Para
$$t = T$$
: $c(t) = A(1 - e^{-1}) = 0.632A$



Respuesta al escalón de un sistema de primer orden Tipo 1

Nótese que en este caso:

El error es: $e(t) = r(t) - c(t) \Rightarrow$

Error en estado estacionario: $e_{ss} = e(\infty) = A - c(\infty) = A - A = 0$

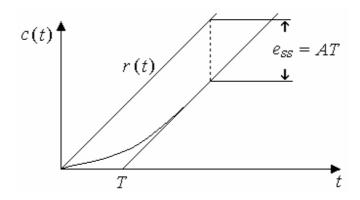
RESPUESTA A LA RAMPA:
$$R(s) = \frac{A}{s^2}$$

Sustituyendo y aplicando fracciones parciales:

$$C(s) = \frac{A}{s^2(Ts+1)} = A\left(\frac{1}{s^2} - \frac{T}{s} + \frac{T}{s+1/T}\right)$$

Antitransformando se obtiene:

Respuesta en el tiempo: $c(t) = A(t - T + T e^{-t/T})$



Respuesta a la rampa de un sistema de $1^{\rm er}$ orden Tipo1

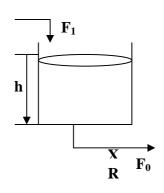
La rapidez de la respuesta transitoria viene dada siempre por T.

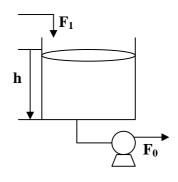
Para el error en estado estacionario se tiene en cambio:

Error: $e(t) = r(t) - c(t) \Rightarrow$

Error en estado estacionario: $e_{SS} = e(\infty) = AT - c(\infty) = AT$

RESPUESTA TRANSITORIA





$$A\frac{dh}{dt} = F - F_0$$

$$F_0 = \frac{h}{R}$$

$$AR\frac{dh^*}{dt} + h^* = RF_I^*$$

$$G(S) = A\frac{H^*(S)}{F_1^*} = \frac{K_P}{\tau_P S + 1}$$

$$A\frac{dh}{dt} = F - F_0$$

 $K_P = R$ = ganancia estática $\tau_p = AR$ =ctte de tiempo

$$A\frac{dh}{dt} = F_{I}$$

$$G(S) = A\frac{H^{*}(S)}{F_{I}^{*}} = \frac{K_{P}}{S}$$

 $K_P = 1/A = \text{ganancia estática}$

Cambio escalón $F_1*(S)=1/S$

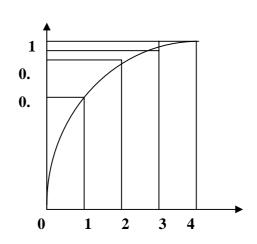
Cambio escalón $F_1*(S)=1/S$

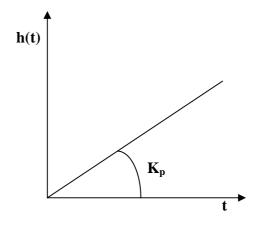
$$H^*(S) = \frac{K_p}{S(\tau_p S + 1)}$$
$$h(t) = k_p (1 - e^{-t/\tau})$$

$$H^*(S) = \frac{K_p}{S^2}$$
$$h(t) = k_p t$$

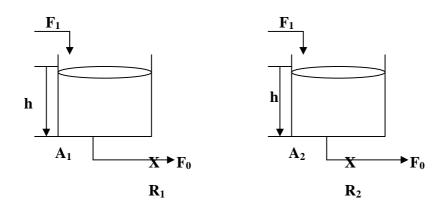
$$h(t) \longrightarrow k_p$$
 $si t \longrightarrow \infty$

$$h(t) \longrightarrow \infty$$
 $si t \longrightarrow \infty$





EFECTOS DE LOS PARAMETROS EN LA RESPUESTA DE LOS SISTEMAS DE PRIMER ORDEN



$$G(S) = \frac{K_p}{\tau_p S + 1}$$
 donde $\tau_p = AR$ $K_p = R$

Parámetros A y R

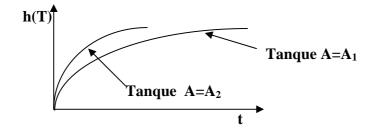
A: area transversal del tanque (medida de su capacidad de almacenamiento) $\tau_{p:}$ ctte de tiempo=(capacidad de almacenamiento) (resistncia del flujo)

1) efecto del area
$$A_1 > A_2$$
 $R \longrightarrow \tau_{p1} > \tau_{p2}$

Tanque con mayor capacidad de almacenamiento tiene constante de tiempo mayor mientras que la ganancia estatica es la misma.

$$H^*(t) = K_P(1-e^{-t/\tau})$$

Tanque con menor área responde más rápido.



2) Efecto del Área y la Resistencia

$$\frac{A_1}{A_2} = \frac{R_2}{R_1}$$

$$\tau_{p2} = A_1 R_1 = A_2 R_2 = \tau_{p2}$$

$$A_1>A_2 \longrightarrow R_2>R_1 \longrightarrow K_{P1}>K_P$$

Mientras sea mayor es la ganancia estática de un tanque, mayor es el valor del nivel del estado estacionario para la misma perturbación.

